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ABSTRACT: Two-step and multistep spin transitions are
frequently observed in switchable cooperative molecular solids.
They present the advantage to open the way for three- or
several-bit electronics. Despite extensive experimental studies,
their theoretical description was to date only phenomeno-
logical, based on Ising models including competing ferro- and
antiferro-magnetic interactions, even though it is recognized
that the elastic interactions are at the heart of the spin
transition phenomenon, due to the volume change between
the low- and high-temperature phases. To remedy this
shortcoming, we designed the first consistent elastic model,
taking into account both volume change upon spin transition and elastic frustration. This ingredient was revealed to be powerful,
since it was able to obtain all observed experimental configurations in a consistent way. Thus, according to the strength of the
elastic frustration, the system may undergo first-order transition with hysteresis, gradual, hysteretic two-step or multistep
transitions, and incomplete transitions. Furthermore, the analysis of the spatial organization of the HS and LS species in the
plateau regions revealed the emergence of complex antiferro-elastic patterns going from simple antiferro-magnetic-like order to
long-range spatial modulations of the high-spin fraction. These results enabled us to identify the elastic frustration as the
fundamental mechanism at the origin of the very recent experimental observations showing the existence of organized spatial
modulations of the high-spin fraction inside the plateau of two-step spin transitions.

1. INTRODUCTION
Fe(II)-based spin-crossover (SC) materials,1 converting
between diamagnetic low-spin (LS, eg

0t2g
6) and paramagnetic

high-spin (HS, eg
2t2g

4) states, are known to exhibit a rich variety
of thermal behaviors, going from (i) gradual conversions to (ii)
first-order transformations accompanied by hysteresis loops2 as
well as (iii) two-step or multistep phase transitions.3−6 SC
solids are known to have potential applications such as
reversible high density memories, ultrafast switches (at the
nanoscale), sensors of temperature and pressure, displays,7−14

etc. From the theoretical viewpoint, elastic models15−23 have
been very efficient in the general description of SC materials.
For example, the elastic models were able to find out the
thermal hysteresis loops related to first-order SC phase
transition as well as their non-linear relaxation at low-
temperature from the photoinduced metastable states. The
macroscopic nucleation, growth, and propagation of the front
transformation, observed experimentally in several examples of
spin-crossover single crystals, were also well described using
electro-elastic and mechano-elastic models accounting for the
unit cell volume change at the transition and for the long-range
nature of the interactions in these systems. Despite this success,
the two-step spin transitions observed experimentally in a
tremendous number of systems remained a challenging
problem, for which no consistent elastic description was

furnished to date. Historically, the two-step spin transitions
were described by Ising-like Hamiltonians24−27 or atom
phonon coupling models,28 as well as by some recent hybrid
models combining elastic and antiferro-magnetic Ising inter-
actions,29 leading to competing interactions. Although very
instructive, these descriptions remain qualitative and do not
capture the essential physical mechanism of the two-step spin
transition. Thus, a consistent model should include only elastic
interactions between SC units from which competing long-
range ferro- and antiferro-elastic interactions should emerge as
a result of the minimization of the internal strain. That is the
objective assigned to the current work, in which we consider
the elastic frustration at the origin of the existence of the two-
step transitions. The crucial point here is to account for the
existence of an elastic frustration when the system converts
from HS to LS. From the structural point of view, the elastic
frustration may arise from steric effects between ligands30 which
hinder some degree of freedom, or from the existence of strong
covalent bonds in some direction around the metal center,
which constrains the unit cell deformation. This concept opens
a huge number of possibilities: the frustration can be included
on nearest-neighboring (nn) atoms or next-nearest neighbors
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(nnn) depending on the lattice symmetry. In previous studies,
performed on 2D systems with square symmetry, the
interaction between the nnn (neighbors along the diagonal)
has been considered with the aim to only keep the structure
stable. Here, we give an active role to the nnn interaction along
which the system experiences elastic frustration in the isotropic
way.

2. ELECTRO-ELASTIC MODEL WITH ELASTIC
FRUSTRATION

The electro-elastic model accounting for the volume change
between the spin transition units is written as a set of fictitious
spins, which mimic the two states of the SC molecules linked
by springs. The total Hamiltonian, in 2D square symmetry, is
given by

∑ σ= Δ − +⎜ ⎟
⎛
⎝

⎞
⎠k T g

1
2

ln
i

iB elas
(1)

where σ is the fictitious spin whose eigenvalues +1 and −1 are
respectively associated with the LS and HS states of the
molecule, Δ is the ligand field gap, g is the degeneracy ratio
between the HS and LS states, which results in a temperature-
dependent field,31 T is the temperature, and kB is the
Boltzmann constant. The second term, elas, in (eq 1) is the
elastic contribution of the lattice, which is written as,

∑ ∑σ σ σ σ

= | |⃗ + | |⃗

= − + −

V r V r
A

r R
B

r R

( ) ( )

2
( ( , ))

2
( ( , ))
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i k
ik i k

elas nn nnn

,

2

,
d

2

(2)

Here, A and B are the elastic constants connecting nn and nnn
atoms, respectively, and rij and rik are the respective nn and nnn
instantaneous distances between sites. The indexes i and j
(respectively, k) run over nn (respectively, nnn) sites. R(σi, σj)
is the equilibrium bond lengths between two nn nodes i and j,
written so as to depend on their spin states: R(+1,+1) = RHH,
R(−1,−1) = RLL, and R(+1,−1) = R(−1,+1) = RHL = (RLL +
RHH)/2, where RHH, RHL, and RLL are the respective equilibrium
distances between HS-HS (HH), HS-LS (HL), and LS-LS (LL)
sites. We denote by δR = RHH − RLL, the lattice constant misfit
between the HS and the LS lattices. The nnn equilibrium
distance along the diagonals Rd(σi, σk) depends on the spin
states of the linked sites i and k, and is written so as to have a
nonfrustrated bond-length in the HS state and induces an
elastic frustration in HS-LS and LS-LS configurations. Let us
denote by ξ (>0), the frustration rate along the diagonals. We
assume a linear dependence of Rd(σi, σk) with ξ, which will be
written to have stress-free nnn equilibrium distances (Rd(σi, σk)

= R(σi, σk)(2)
1/2) for ξ = 0 and Rd(σi, σk) = RHH(2)1/2 for ξ = 1.

There is a unique ξ-dependence of Rd(σi, σk) satisfying the
previous perequisites (see demonstration in the Appendix I of
the Supporting Information = SI). So, the equilibrium distances
satisfying these prerequisites are

σ σ
δ

σ σ

σ σ σ σ σ σ
δ

ξ

= + +

= + − +

R R

R R

( , )
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As a result, the equilibrium distances (see eq 3) along the
diagonals in the LL and HL configurations, respectively given
by

δ ξ
δ

ξ

− − = = +

+ − = = +

R R R

R R R

( 1, 1) 2 2 and

( 1, 1) 2 2
2

R

R

d d
LL LL

d d
HL HL

(4)

are in both cases bigger than their respective usual equilibrium
values for a nonfrustrated system, i.e., (2)1/2RLL and (2)1/2RHL.
It is worth noticing that the frustration may also exist even

for ξ = 0 in the rigid square lattice. Obviously, when the system
is in the macroscopic HS or LS phases, the elastic energy is
equal to zero, because all distances (between nn and nnn) are
at equilibrium. In contrast, in the nonrelaxed antiferro-elastic
(AF) configuration (HS-LS-HS-LS···), in which each HS
(respectively, LS) site is surrounded by LS (respectively, HS)
neighbors, for which nn (respectively, nnn) equilibrium
distances are equal to RHL (RHH (2)1/2 and RLL (2)1/2), a
spontaneous stress is systematically generated (the minimum
elastic energy is nonzero) in the unit cell. The equilibrium
lattice constant, a, is determined so as to minimize the total
energy of the rigid square structure, i.e., Vtot(a) = 2N[Vnn(a) +
Vnnn((2)

1/2a)] for a system of N atoms. Only with the
condition of energy minimization dVtot(a)/da = 0, does a
spontaneous stress remain in the crystal: σ0 = −Vnn′ (a) = (2)1/2

Vnnn′ ((2)1/2a). The calculated equilibrium distance, a, in this
case is a = RHL, and the associated relaxed elastic energy is
nonzero and is equal to Erelax

AF,elas = 2BδR
2.

According to eq 3, for ξ = 1, the HS state has a minimum
elastic energy equal to zero because equilibrium distance for
nnn (respectively, nn) becomes RHH (2)1/2 (respectively, RHH).
In contrast, the HL and LS configurations have nnn
(respectively, nn) equilibrium distances also equal to
RHH(2)1/2 (respectively, RHL) and RHH(2)1/2 (respectively,
RLL), respectively. Consequently, these two macroscopic states
(AF and LS) remain always frustrated with a nonzero residual
elastic energy, as soon as ξ ≠ 0. The same situation holds for ξ

Figure 1. From left to right: LS unit cell configurations correspond to x = RLL, Rrelax
LL (relaxed mechanical state), and Rd

LL/(2)1/2. Red springs are
under tension and black ones are at equilibrium. Right panel: elastic energies Eelas(x) associated with the previous three situations, easily identified by
their x values at their minima. In the relaxed elastic configuration (green curve) nn and nnn bonds stay frustrated.
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≠ 1, where the LS and the AF phases stay frustrated even at
their minimal elastic energies, owing to the incompatibility
between the nn and nnn equilibrium distances.
To well document and predict these elastic features, we study

the elastic behavior of a rigid square of SC atoms whose total
elastic energy (see Appendix II in the SI) is written as,

∑

∑

σ σ

σ σ

= −

+ −

E
A

x R

B
x R

2
( ( , ))

2
( 2 ( , ))

i j

i k

elas
nn

2

nnn
d

2

(5)

Figure 1 displays the elastic configurations of a rigid LS unit
cell of square lattice for ξ ≠ 0. According to eq 5, in the first
configuration the nn springs are at rest, while the nnn springs
(in red) are under tension. However, if the nnn distances are
fixed to their equilibrium distance, (2)1/2(RLL + δR), the elastic
energy will be stored in nn springs (figure in the right). The
relaxed configuration, depicted in the center, corresponds to
the mechanical equilibrium ∂ ∂ =E x/ 0elas and shows the
stressed character of all bonds (in red). In the general case,
the analytic minimization (see Appendix II in the SI) of the
elastic energy (eq 5) of rigid LS (i.e., all distances are equal to
RLL) and HL antiferro-like (i.e., all distances are RHL) leads to
the following nn relaxed distances,

α
α

ξδ

α
α

ξδ

= +
+

= +
+

R R

R R

2
1 2

and

1 2

R

R

relax
LL LL

relax
HL HL

(6)

where α = B A( / ) is the ratio between the nnn and nn elastic
constants. One should note the linear dependence of the
relaxed nn distances on ξ and their nonlinear dependence on α,
which indicates the important role of the nnn elastic constant,
which has not been considered in previous elastic models for
SC solids. To keep the volume of LS lattice smaller than that of
HS, one needs to fulfill the inequality, Rrelax

LL < RHH, which
implies the following constraint, ξ ξ α α< = +(1 2 )/2max ,
leading here to ξ < 2.66.

3. RESULTS AND DISCUSSION
We have carried out extensive Monte Carlo simulations (MC)
based on a novel code written in CUDA32 with the libraries of
cuRand33 and thrust,34 and using the performance of Nvidia
cores. We have “carefully” parallelized the MC algorithm for the
spin state of the crystal in several clusters. In this study, the
clusters have a size of 4 × 4 where we check the spin state of
each molecule sequentially. In the simulations, where the
simulated crystal size is Nx × Ny = 48 × 24, we have 12 × 6
clusters which means that the code checks 72 spin nodes each
MC update.
Next, the lattice is relaxed in a deterministic way, using

molecular dynamics method,20 to reach the stable mechanical
state. At each step, the code calculates the gradient of potential
energy (eq 2) on each node in order to determine the force

vector acting on every molecule ⃗ = −∇⃗F elas. The obtained
force field over the whole system is then normalized to the
strongest modulus, and the lowest energy configuration is
searched by relaxing the system in overdamped dynamics with a
time step, dt2 = 0.002. This procedure is repeated 3 times
before checking the next 72 spin sites. The new positions of the

molecules are then recalculated using the new force field with a
strong damping to avoid oscillations.
The algorithm is repeated 16 times (number of molecules in

one cluster), which defines one MC step (MCS). The thermal
hysteresis loops are calculated by using 625 MCS as a waiting
time to reach the stationary states at each temperature, and
then the next 50 MCS are averaged to calculate the HS fraction,
nHS(T).
We used here, as far as possible, realistic parameter values for

the model. So we set, RHH = 9.4063 Å and RLL = 9.167 Å which
led to lattice parameter expansion between the LS and the HS
states δR = RHH − RLL = 0.24 Å, in excellent agreement with
experimental data.35 The elastic constant values, A = 8 × 105 K
nm−2 and B = 0.3A, are chosen so as to have bulk modulus of
some tens of GPa22 as detailed in the Appendix III of the SI.
The other parameter values are Δ = 281.5 K and ln g = ln(150)
≃ 5.01, leading to a molar entropy change at the transition: ΔS
= 41 J K−1 mol−1 and a transition temperature

= Δ ( )T k g2 / lneq B .

We have calculated the thermal-dependence of the HS
fraction, σ= +n (1 )/2HS , as a function of T for different
values of ξ. The results are summarized in Figure 2. The

corresponding thermal evolution of the average nn bond
lengths, (⟨|ri⃗j|⟩), given in Figure S1 of the SI, shows an increase
of the LS bond lengths as ξ is increased. For relatively weak
values of the frustration, for example ξ = 0.2, the behavior is
that of the usual first-order transition (red curve) between the
LS and the HS states accompanied by a thermal hysteresis loop.
Increasing ξ value up to ξ = 0.6, the transition region is
lowered, and the behavior changes to that of a two-step
transition (blue curve) with two hysteresis loops separated by a
small plateau. For higher values of ξ, such as ξ = 0.8 (black
curve), the plateau widens and separates a ‘hysteretic” first-
order spin transition at low temperature (Teq

− ∼ 50 K) and a
gradual one at higher temperature (Teq

+ ∼ 90 K). The spatial

Figure 2. Thermal dependence of the HS fraction for different values
of the elastic frustration ξ, showing usual first-order transition (red),
two-step with two first-order phase transitions accompanied by
hysteresis loops (blue), and two-step SC transition with a large
plateau around nHS ∼ 0.5 (black). Notice the global shift of the
transition temperatures to low-temperature regions as ξ increases. The
parameters of the model were: RHH = 9.4063 Å, RLL = 9.167 Å
( = +R R R( )/2HL HH LL ) for the bond lengths, and A = 8 × 105

Knm−2 (respectively, B = 0.3A) for nn (respectively, nnn) elastic
constants, Δ = 281.5 K and ln g ≃ 5 for the ligand field and degeneracy
ratio, respectively. The temperature sweep rate was 1 K every 675
MCS, which was the waiting time to reach the stationary state.
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organizations of the HS fractions on heating and cooling,
corresponding to the three thermal hysteresis of Figure 2, are
given in the three movies S1−S3, available in the SI. In movie
S1 (ξ = 0.2) the transformation on cooling (respectively,
heating) from HS to LS (respectively, LS to HS) starts from the
corners through the nucleation and propagation of a single
domain of the stable LS (respectively, HS) phase inside the
metastable HS (respectively, LS) phase. The situation is
different for the two-step transitions (ξ = 0.6 and ξ = 0.8).
For ξ = 0.6 (movie S2), on cooling, both spin transitions lead
to a nucleation and growth process starting from the corners.
On heating, the low-temperature spin transition shows also the
emergence of ordered antiferro-elastic HS-LS-HS-LS (with
antiphase boundaries) structures from the corners, whereas for
the higher spin transition (around T ∼ 94 K) between the AF
and the HS states, we see the appearance of a significant
amount of HS droplets in the “volume”. This multidroplet
nucleation process is caused by the strengthening of thermal
fluctuations at this temperature combined with the weakening
of the cooperativity by the increase of the elastic frustration.
The domain growth mode is quite similar for the case ξ = 0.8,
where we obtain a nucleation from the corners on heating and
cooling for the hysteretic low-temperature spin transition,
whereas the high-temperature transition (almost gradual)
shows the presence of ramified structures and multidroplet
nucleation, due to its weak cooperative character. One should
notice, however, that the case of ξ = 0.8 is quite unusual, since
on heating from the plateau region, the snapshots (movie S3)
show the coexistence of several types of ordered patterns, such
as, HS-LS-HS-LS, LS-HS-HS-HS-HS-LS (and its symmetric
configuration) etc., attesting that spin-crossover solids with
elastic frustration may behave as complex systems.
We would like to note here that the present results contrast

with all previous theoretical investigations on the occurrence of
multistep spin transitions in SC materials, which assumed the
existence of ad-hoc antiferro-magnetic interactions, which
unfortunately do not catch the essential physics of this
problem. The elastic frustration is then at the heart of the
multistability of SC solids.
To understand the conditions of occurrence of the various

transitions observed in Figure 2, we performed a detailed
energetic analysis. Let us consider the case of a simple
hysteresis loop (red curve) of Figure 2. The transition
temperatures between LS↔HS can be simply defined as T↑ =
T(nHS = 0.5) for heating (↑) and T↓ = T(nHS = 0.5) for cooling
(↓) processes. Similarly, for the two-step transitions (blue and
black curves), the transition temperatures of the upper (+) and
lower (−) hysteresis loops are roughly given by T↓↑

+ = T(nHS =
0.25) and T↓↑

− = T(nHS = 0.75), respectively. The existence of a
plateau at nHS = 0.5 involves the condition, |(∂nHS/∂T)(T =
T↓↑)| < |(∂nHS/∂T)(T = T↓↑

± )|.
Now, we investigate analytically the condition of occurrence

of the two-step transition. For that, the Hamiltonian (eq1) was
dissected (see Appendix IV in the SI) and rewritten under the
form of an “Ising-like” model. There, we could identify the total
effective field acting on a single spin site as equal to

δ ξ

δ ξ ξ

= Δ − − + −

+ −

h x x R A B

B

( ) 2 ( )( 2 (1 ))

2 (1 )
i R

R

eff
HL

2
(7)

where x = |ri⃗j|, in the approximation of a rigid lattice. Equation 7
shows that the effective “ligand field” acting on the molecule
includes the usual ligand-field energy (Δeff) and an elastic field

contribution arising from nn and nnn interactions. Considering
that at the transition temperature the effective ligand field
reverses its sign, it was possible to find the analytic dependence
of the transition temperatures, Teq and Teq

± , corresponding
respectively nHS = 0.5 and nHS = 0.25 and 0.75. These analytic
expressions are given by

ξ
ξδ
α

= Δ −
+

T
k g

B
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B (8)

ξ ξ
δ
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ξ= ±
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2 1R

eq eq

2

B

2

(9)

A remarkable elastic field energy contribution, 2Δelas =
−[4B(ξδR)2/(1 + 2α)] to the electronic ligand field, 2Δ,
emerges in eq 8, shifting downward the transition temperatures,
in agreement with the numerical results of Figure 2. This
behavior is enhanced when the lattice parameter misfit δR or the
nnn elastic interaction is increased. Consequently, we can
consider that there is a one-step first-order transition when Teq

−

> Teq > Teq
+ , which means that only the first equation in eq8 is

valid. When the two-step transition behavior occurs, eq 9
becomes true, and in this case we satisfy the condition Teq

− < Teq
< Teq

+ . This way, by increasing the frustration parameter ξ, the
red thermal hysteresis of Figure 2 splits when Teq(ξ) = Teq

± (ξ),
which defines a bifurcation point taking place at

ξ α α
α

= + ± +1 2 1 2
2th (10)

It is interesting to notice that the threshold value, ξth, above
which the double step transition takes place, depends only on
the ratio between the nnn and nn elastic constants. Within the
value α = =B A/ 0.3 used in this work, two values ξth =
0.55848 and 4.77485 (excluded) are obtained. This prediction
matches very well the value ξth ≈ 0.57 found by MC
simulations, depicted in the phase diagram of Figure 3, in

Figure 3. Calculated diagram illustrating the ξ-dependence of the
transition temperatures. Red and blue triangles are MC results of T↑
and T↓ . Crosses represent MC transition temperatures
(= +↑ ↓T T( )/2) and the dashed black line is the analytical prediction
of eqs 8and 9. Region (i) and region (ii), separated by the line ξ = ξth
∼ 0.558, delimit the regions of one-step and two-step spin transition,
respectively. The oblique dashed line stands for the geometrical locus
of the threshold points (ξthresh, Tthresh) as a function of α. See text for
more explanation. The parameter values are the same as those of
Figure 2, except for ξ, which was varied in the interval [0.2:0.9].
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which we present the ξ-dependence of the transition
temperatures. There, the dashed black line corresponds to
the analytical expressions of the equilibrium transition temper-
atures Teq(ξ), given by eqs 8 and 9, while the crosses are those

derived from MC simulations as = +↓ ↑( )T T T /2.eq The blue

(respectively, red) triangles correspond to lower T↓ (respec-
tively, upper, T↑) transition temperatures of the MC thermal
hysteresis, which, of course, depend on the temperature
sweeping rate, since they correspond to the end of
metastability. So, according to ξ values, three regions can be
identified in the phase diagram: (i) a one-step first-order
transition for 0 < ξ < 0.57; (ii) two-step transition for 0.57 < ξ
< 1; and (iii) an incomplete (or partial) SC transition for ξ >
ξinc. In the region of two-step transitions, the thermal width of
the plateau is given ΔT = (4BδR

2/kB ln g)[(2α1 + 2α)ξ2 − 2ξ +
1]. This double step transition exists as soon as T↓

− > 0 K. To
complete the phase diagram of Figure 3, we have calculated the
geometrical locus of bifurcation points (given by eq 10) as a
function of α in T-ξ diagrams. The obtained curve (see SI for
the details of the calculations) is plotted in bold dashed line.
The value of the threshold transition temperature, Tth(ξth) at

ξ = ξth, separating the one- and two-step transition areas, is
calculated by introducing eq 10 into the eq 8, which gives

ξ
δ

ξ= Δ − −T
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2

B
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where ξth is α-dependent (eq 10). Increasing the elastic ratio α
results in a decrease of Tth(ξth). Consequently, we found that
there is a maximum ratio αmax allowing the existence of a two-
step transition; at this value Tth = 0 K, which leads to

α =
−
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δ
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2

R
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As long as we do not have an analytical expression for T↓
−, we

can safely approximate the threshold value ξinc at which the
incomplete spin transition emerges as given by the relation Teq

−

= 0. The expression of ξinc is then obtained as

ξ α
α

α α
δ

= − +
−

+ ± + − Δ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥B

1 2
2(1 )

1 2 3 2(1 )
R

inc 2

(13)

Within the parameter values used in the simulation we
evaluated ξinc = 1.045 (the negative value is ignored).
Nevertheless, in the simulations an incomplete transition
could appear at ξ < 1.045, for two reasons. First, the condition
Teq
− = 0 overestimates the value of ξinc, and second, even for T↓

−

> 0 the obtained phase in the plateau region may stay “frozen”
due to kinetic effect (due to the lack of sufficient thermal
fluctuations).
One of the most important features of the two-step transition

in SC solids is the self-organization of the HS and LS domains
in the plateau region. Thus, in the case of Fe(2-pic)3Cl2EtOH
(2-pic = 2-amino-methyl-pyridine),36,37 for example, which
shows a two-step spin transition with a plateau, Burgi et al.38

demonstrated using X-ray diffraction experiments that in the
plateau region, which corresponds to nHS ≃ 0.5, this system self-
organizes as a succession of globally LS and HS layers, which
was one of the first demonstrations of the emergence of
complexity in spin-crossover solids. More recently, X-ray
diffraction investigations39−43 have evidenced several types of
organization, like usual antiferro-magnetic-like (HS-LS-HS-
LS···) configurations, but also more subtle ones like (HS-HS-
LS-LS-HS-HS-LS···), and even much more complex 2D
patterns and modulated HS concentration structures with a
vector of modulation which can be commensurate or
incommensurate with the lattice parameter. So, in this context,
we investigate the type of spatial organization of the spin states
inside the plateau upon the two-step transitions of Figure 2.
Selected snapshots of the spatial organization of the system are
shown in Figure 4 for the frustration values, ξ = 0.6 and ξ = 0.8,
corresponding to the blue and black curves of Figure 2,
respectively. For ξ = 0.6 (respectively, ξ = 0.8), the snapshots
are given at temperatures 91, 85, and 82 K (respectively, 91, 70,
and 49 K), and the corresponding HS fractions are nHS ≃ 0.93,
nHS ≃ 0.5, and nHS ≃ 0.4 (respectively, nHS ≃ 0.9, nHS ≃ 0.5, and
nHS ≃ 0.45).
We see clearly, for both cases, that the system converts from

an ordered HS state to an intermediate ordered antiferro-like
structure, in which each HS (respectively, LS) site is
surrounded by LS (respectively, HS) sites. In addition, we
found in the case ξ = 0.6, the presence of antiphase boundaries
(see Figure 4), which appeared disordered due to thermal
fluctuations. Here, we recall that originally, antiphase
boundaries (APB) have been extensively studied in metal
alloys and in semiconductors.44,45 They constitute interfaces
separating two macroscopic phases having the same order
parameter value, and so they can be considered as topological

Figure 4. Snapshots of the lattice configurations along the thermal transition on cooling. Top (respectively, bottom) panels correspond to the blue
(respectively, black) curve of Figure 2 for which ξ = 0.6 (respectively, ξ = 0.8). From left to right for both cases, the middle panels correspond to the
plateau region. Antiphase boundaries (represented in gray) emerge for ξ = 0.6 at 85 and 82 K, while we see a “perfect” AF order for ξ = 0.8 at 70 and
49 K. Red (respectively, blue) points correspond to HS (respectively, LS) molecules. See text for more explanation.
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defects. In the present case, the APB separate two antiferro-
magnetic-like structures having an order parameter value nHS =
1/2. To help the reader well identify the two types of antiferro
structures, which represent two degenerate states, we high-
lighted them with different colors for each “phase”. Since the
energy of these two states is equal, the APB can move freely
without any energy supply. The case of ξ = 0.8 is also
interesting since it shows an almost “perfect” antiferro-elastic
ordering in the plateau region [50:85] K. For this case, it was
possible to define two sublattices, A and B, for which we
followed the thermal dependencies of their associated HS
fractions, nHS

A and nHS
B , which are sketched in Figure S2 of the

SI. Both nHS
A (T) and nHS

B (T) show bifurcation points denoting
the existence of symmetry breaking between the two
sublattices. This is also confirmed by the thermal evolution of
the order parameter, nHS

A − nHS
B , given in Figure 5, where we

observed evidence of symmetry breaking at T = 55 and 88 K
(respectively, 45 and 88 K) on heating (respectively, cooling),
denoting the existence of second-order phase transitions. The
fact that the order parameter, nHS

A −nHSB , does not reach 1 in the
middle of the plateau region is due to the presence of disorder
at the corners and edges of the lattice (see Figure 4).
Increasing ξ values above ξ = 1.045 causes the shift of the

down thermal hysteresis of Figure 2 to low-temperature regions
(see eq 8), until reaching the limit, Teq

− = 0, above which the
intermediate phase (the plateau) is stabilized until 0 K, as
depicted in Figure 6. However, the incomplete (or partial) spin
transition may happen for frustration values, ξ ≤ 1.045, due to
kinetic effects related to the velocity of the temperature sweep
rate of the Monte Carlo procedure. The system is then trapped
in the plateau region (as for ξ = 1 in Figure 6) due to the lack
of thermal fluctuations and subsequent increase of the lifetime
of the metastable states as shown in Figure 6. Interestingly, we
have also observed at T = 10 K for the value ξ = 1, an almost
perfectly ordered AF domain, as shown in Figure 7, where we
give the spatial organization of the HS (red dots) and LS (blue
dots) sites. Besides the electronic configuration of the system,
the study of the elastic organization can be investigated through

the spatial dependence of the longitudinal dx and the transverse
dy nn bond lengths along the x-axis. Their expressions are

= | ⃗ − ⃗ | = | ⃗ − ⃗ |+ +d x r r d x r r( ) and ( )x i j i j y i j i j1, , , 1 , (14)

We see in the bottom figures of Figure 7 that, except at the
border of the lattice, both distances, dx and dy, are invariant by
translation, and their values perfectly match the analytical
prediction of Rrelax

HL given in eq 6, confirming the antiferro-elastic
ordered character of this phase. On the other hand, it is worth
noticing that for frustration parameter values ξ < 1.0, leading to
a two-step transition, we could find a value of Δ and g for which
T↓
− ∼ 0 K, which then consequently leads to an incomplete spin

transition, which are often observed experimentally5,40,46 by
changing the size of the ligand or the anion.47−58

If we increase further the frustration ratio, ξ, the HS residual
fraction appearing at low temperature increases (black curve in
Figure 8) and reaches the value nHS ≃ 0.77 for ξ = 1.5. For this
strong frustration, a new type of organization in the plateau
region is found. Figure 1 presents the corresponding spatial
electro-elastic configuration emerging at T = 10 K. This type of

Figure 5. Thermal dependence of the difference of HS fractions, ∥nHSA
− nHS

B ∥, of the two sublattices A and B in the coexistence region of the
plateau for ξ = 0.8, corresponding to the black curve of Figure 2.
Second-order phase transitions in each sublattice are revealed,
announcing the presence of a symmetry breaking between A and B
sublattices. The red (respectively, blue) curve corresponds to the
heating (respectively, cooling) process. The results have been averaged
over 6 different random seeds.

Figure 6. Thermal dependence of the HS fraction in the case of strong
frustration values, ξ = 1.0 and ξ = 1.5, showing the occurrence on
incomplete spin transition. The other parameter values are the same as
those of Figure 2.

Figure 7. Top: snapshots showing the perfect antiferro-like spatial
organization of the HS/LS sites corresponding to Figure 6 at T = 10 K
for ξ = 1.0. The molecules’ positions are represented by circles of
different colors: HS (red) and LS (blue). Top right: an enlarged view
of the squared region. Gray dashed lines linking the LS molecules are
added for clarity. Bottom: longitudinal (dx) and transverse (dy) lattice
parameter distances (see eq 14) along x-direction at j = Ny/2, showing
a uniform behavior except around the lattice edges. The obtained
values match very well the analytical predicted value Rrelax

HL given in eq
6.
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structure is difficult to predict analytically from the simple
analysis of the relaxed energy of the different configurations of
the square unit cell of Figure 1, because the obtained self-
organized pattern involves the interplay between several unit
cells. We have investigated the elastic properties of the ordered
state of Figure 8 by inspecting the behavior of the longitudinal
dx(x) and the transverse dy(x) interatomic distances along the
x-direction. The results, depicted in the bottom of Figure 8,
clearly indicate the presence of periodic spatial elastic
modulations for both nn distances. In particular dx(x) (as
well as dy(y), not shown) exhibits a modulation which is
commensurate with the lattice parameter. In particular we
notice here that dx(x) exceeds locally at its maximum values,
those (RHH) of the relaxed HS state, indicating that the whole
lattice remains under tension in the plateau region. We checked
that the model in its current state may allow obtaining
incommensurate modulations for some values of the frustration
parameter at low temperature, similarly to those observed in
Frenkel-Kontorova model59 for epitaxial growth. This specific
part, which needs particular attention, will be developed
elsewhere.
It is worth mentioning that the results of Figure 8 recall the

recent experimental findings of X-ray investigations,39,40

showing the occurrence of HS/LS modulated structures in
two-step spin-crossover compounds. In particular HS-HS-LS-
LS··· configurations were reported in the experimental
literature. We could obtain these structures using the current
model, but then we had to consider an anisotropic deformation
of the unit cell upon the SC transition. This is also another
extension of the model, which will be considered elsewhere.

Remarkably, if we inspect in details the shape of the red curve
of Figure 6 (obtained for ξ = 1), we see the presence of a
second plateau around T ≃ 80 K for nHS ≃ 0.7, announcing the
presence of a second structural phase, which is stabilized in the
plateau of the black curve for ξ = 1.5. This new pattern shows a
complex organized structure where the LS sites appear every
four HS sites. This type of organization causes the modulation
of the nn distances between the sites, as shown by the spatial
dependence of dx and dy along the x direction. Much more
complex organizations, leading to HS-HS-LS-HS-HS-LS-HS-
HS-LS structures, can also be found according to the values of
ξ. Much more interesting, patterns mixing different types of
organizations may also emerge in the simulations, especially on
heating in the case of double-step transitions, as the reader can
see in movies S1−S3 given in the SI. Furthermore, if we start at
low temperature (T = 40 K, for example) with ξ = 1 and we
increase the value of the frustration parameter ξ up to 1.5, we
observe a change of spatial self-organization of Figure 7, which
first becomes disordered before the emergence of long-range
patterns corresponding to those of Figure 8. Selected snapshots
corresponding to this crossover behavior are displayed in
Figure 9. It is clear that the role of temperature would deserve
another study.

4. CONCLUSION

In conclusion, we reported on the first full elastic model
enabling the description of the two-step spin transition in SC
solids, caused by the existence of elastic frustration in the
lattice. In real systems, this frustration may be caused by the
presence of covalent (respectively, weak) bonds enhancing the
lattice rigidity (respectively, softness) in some directions, which
may hinder (respectively, favor) the deformation in some
particular directions. This type of anisotropy is present in many
SC materials. In the current work, we studied the specific case
of a rigid 2D lattice, in which a controlled frustration (through a
parameter ξ) takes place along the diagonals. To be realistic,
the model is written so as to keep the HS state free from any
frustration. Our study reproduces several experimentally
observed situations, among them the one-step first-order
transition, two-step transitions, and partial SC transitions, also
called incomplete spin transitions. In addition, we observed that
according to the degree of frustration, a spatial order of the HS-
LS species emerges in the plateau region. The type of order and
its complexity depend on ξ values. For relatively small ξ values
an AF-like order was evidenced in excellent agreement with
experimental observations, while for strong frustration more
complex organizations were found, among which a spatial
modulation of the bond-length distances was revealed, here also
in excellent agreement with very recent X-ray diffraction
investigations. We would like to mention here, to the best of
our knowledge, that existing spin-based models which studied
the problem of the two-step SC transition included explicitly
antiferro-magnetic-like interactions in the Hamiltonian. On the

Figure 8. Top: snapshots showing the occurrence of a complex spatial
organization of the HS/LS sites for ∼n 3/4HS corresponding to the
incomplete spin transition of Figure 6 for ξ = 1.5 at T = 10 K. Red
(respectively, blue) dots represent HS (LS) sites. Gray dashed lines
linking the LS molecules are added for clarity. Bottom: longitudinal
(dx) and transverse (dy) lattice parameter distances (see eq 14) along
x-direction (at j = Ny/2) showing a modulated structure. The
modulation is anisotropic but commensurate along the x and y
directions with the lattice parameter. See text for more explanation.

Figure 9. Snapshots showing the crossover between two types of spatial organization of the HS and LS sites, obtained by varying the frustration rate
ξ at T = 40 K. From left to right, ξ = 1.2, 1.39, and 1.79. The configurations corresponding to ξ = 1 for which nHS = 0.5 and ξ = 1.8 are given in
Figures 7 and 8.
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contrary, here the two-step transition emerges as a result of
competing elastic interactions resulting from the presence of
elastic frustration along certain crystallographic directions. As a
result, it is extremely difficult to predict in advance the self-
organized structures which will be stabilized in the plateau
region. Anisotropic next-nearest-neighbor Ising-like models60,61

combined with elastic interactions may represent an appro-
priate option to describe the self-organized structures arising
from a frustrated SC solid, using a phenomenological
interaction between spin states.
Coming back to our elastic description, we would like to

stress the prediction of the existence of free APB in the
antiferro-elastic region and its different nature compared to the
usual HS/LS interface observed by optical microscopy35,62,63

during the first-order transition of a SC single crystal. The latter
separates two phases with different order parameter values,
namely nHS = 0 and nHS = 1, whereas APB separates two regions
with the same order parameter (here nHS = 1/2). Since both of
them emerge from the long-range nature of the elastic
interactions, they allow macroscopic domain growth from the
corners in the model. The dynamics of these APB and their
observations constitute a future experimental challenge.
Finally, it is important to note here that the current model

offers several extensions related to the choice of the directions
of the elastic frustration, which may lead to multistable spin
transitions. The complex interplay between the electronic and
the elastic structures under light irradiation and the subsequent
system relaxation also opens the opportunity of observing
nonlinear dynamics, pattern formation of complex elastic
structures, as well as hidden states or hidden hysteresis,
which can be revealed by the competition with light irradiation,
which favors disorder, and elastic long-range elastic inter-
actions, which build up long-range order. Furthermore, the
quantitative comparison to a real system requires identification
of the source of the elastic frustration in the structural data and
adaptation of the model to the possible anisotropy of the unit
cell deformation upon spin transition. This work is in progress.
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Vendrell Peŕez, A.; Boland, Y.; Ksenofontov, V.; Gütlich, P. Hyperfine
Interact. 2014, 226, 217−221.
(53) Bushuev, M. B.; Lavrenova, L. G.; Shvedenkov, Y. G.; Varnek, V.
A.; Sheludyakova, L. A.; Volkov, V. V.; Larionov, S. V. Russ. J. Coord.
Chem. 2008, 34, 190−194.
(54) Verat, A. Y.; Ould-Moussa, N.; Jeanneau, E.; Le Guennic, B.;
Bousseksou, A.; Borshch, S. A.; Matouzenko, G. S. Chem. - Eur. J.
2009, 15, 10070−10082.
(55) Pfaffeneder, T.; Bauer, W.; Weber, B. Z. Anorg. Allg. Chem.
2010, 636, 183−187.
(56) Martínez, V.; Gaspar, A.; Muñoz, M.; Bukin, G.; Levchenko, G.;
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